14 research outputs found

    Development and Testing of Self‒Powered Detectors for Nuclear Measurements in Fusion Reactors

    Get PDF

    Comparative survey of evaluated nuclear data libraries for fusion-relevant neutron activation spectrometry

    Get PDF
    The neutron flux-spectrum in a fusion device is frequently determined with activation foils and adjustment of a guess-spectrum in unfolding codes. Spectral-adjustment being a rather complex and uncertain procedure, we are carefully streamlining and evaluating it for upcoming experiments. Input nuclear cross-section data holds a vital position in this. This paper presents a survey of common dosimetry reactions and available data files relevant for fusion applications. While the IRDFF v1.05 library is the recommended source, many reactions of our interest are found missing in this. We investigated other standard sources: ENDF/B-VIII.0, EAF-2010, TENDL-2017, JENDL-4.0 etc. And, we analysed two experiments to ascertain the sensitivity of the spectral adjustment to the choice of nuclear data. One was performed with D-D (approx. 2.5 MeV peak) neutrons at the Joint European Torus (JET) machine and another with a white neutron field (approx. 33 MeV endpoint energy) at Nuclear Physics Institute (NPI) of Řež. Choice of cross-section source has affected the integral fluxes (20%) and individual group fluxes (<30%). Based on this experience, essential qualitative conclusions are made to improve the fusion activation-spectrometry

    Comparative survey of evaluated nuclear data libraries for fusion-relevant neutron activation spectrometry

    Get PDF
    The neutron flux-spectrum in a fusion device is frequently determined with activation foils and adjustment of a guess-spectrum in unfolding codes. Spectral-adjustment being a rather complex and uncertain procedure, we are carefully streamlining and evaluating it for upcoming experiments. Input nuclear cross-section data holds a vital position in this. This paper presents a survey of common dosimetry reactions and available data files relevant for fusion applications. While the IRDFF v1.05 library is the recommended source, many reactions of our interest are found missing in this. We investigated other standard sources: ENDF/B-VIII.0, EAF-2010, TENDL-2017, JENDL-4.0 etc. And, we analysed two experiments to ascertain the sensitivity of the spectral adjustment to the choice of nuclear data. One was performed with D-D (approx. 2.5 MeV peak) neutrons at the Joint European Torus (JET) machine and another with a white neutron field (approx. 33 MeV endpoint energy) at Nuclear Physics Institute (NPI) of Řež. Choice of cross-section source has affected the integral fluxes (20%) and individual group fluxes (<30%). Based on this experience, essential qualitative conclusions are made to improve the fusion activation-spectrometry

    Comparative survey of evaluated nuclear data libraries for fusion-relevant neutron activation spectrometry

    No full text
    The neutron flux-spectrum in a fusion device is frequently determined with activation foils and adjustment of a guess-spectrum in unfolding codes. Spectral-adjustment being a rather complex and uncertain procedure, we are carefully streamlining and evaluating it for upcoming experiments. Input nuclear cross-section data holds a vital position in this. This paper presents a survey of common dosimetry reactions and available data files relevant for fusion applications. While the IRDFF v1.05 library is the recommended source, many reactions of our interest are found missing in this. We investigated other standard sources: ENDF/B-VIII.0, EAF-2010, TENDL-2017, JENDL-4.0 etc. And, we analysed two experiments to ascertain the sensitivity of the spectral adjustment to the choice of nuclear data. One was performed with D-D (approx. 2.5 MeV peak) neutrons at the Joint European Torus (JET) machine and another with a white neutron field (approx. 33 MeV endpoint energy) at Nuclear Physics Institute (NPI) of Řež. Choice of cross-section source has affected the integral fluxes (20%) and individual group fluxes (<30%). Based on this experience, essential qualitative conclusions are made to improve the fusion activation-spectrometry
    corecore